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EXECUTIVE SUMMARY

Introduction

Huffman codes, comma-free codes, and block codes with shift
indicators are important candidate message compression codes for
improving the efficiency of communication systems. Data
compression codes have been used for communications in error-free
channels. This study was undertaken to determine if these codes
could be utilized to increase the thruput of the fixed very low
frequency (FVLF) communication system. This application involves
the use of compression codes in a channel with errors.

Background

The investigation of data compression codes was constrained
to the investigation of information carrying bits and to
compression based on the probabilities of occurrences of
characters. The data compression capabilities of the candidate
codes were investigated by estimating the average number of bits-
per-character for the different codes; the performance of the
code in a channel with errors was investigated in terms of the
average number of characters decoded in error per bit error and
the average number of characters output from the decoder in error
per bit error. Generally speaking, as the number of bits-per-
character decreases (that is, as data compression increases), the
number of characters decoded in error per bit error and the
number of characters output from the decoder in error per bit
both increase.

Results

The performance of Huffman codes, suffix/prefix comma-free
codes, and some variants of Baudot codes were obtained for the
encoding of narrative files of an IBM PC for a 58-~character set
in lieu of processing of Navy messages (which were not available
in an IBM PC compatible format). These results should be
indicative of the results which could be obtained for the
narrative portions of Navy messages using the 58-character
(Baudot) set. Huffman code performance results in channels with
errors were obtained through simulation on the IBM PC; results
for the other codes were obtained analytically.

The number of degrees of freedom in the Huffman code
construction process and the complexity of the impacts of bit
errors on character synchronization precluded analytical
treatment of Huffman code performance in a channel with errors.
The severe problems uncovered by the simulation of Huffman codes
in these channels led to the consideration of alternative data
compression codes less sensitive to bit errors. The error
mechanisms for these alternative codes are direct enough to allow
analytical treatment.

Table E-1 summarizes the results of this investigation.
The comma-free code statistics are for the construction leading
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TABLE E-1. PERFORMANCE COMPARISON OF BEST
DATA COMPRESSION CODES

COMPRESSION BITS PER DECODE CHAR ERR OUTPUT CHAR ERR
CODE CHARACTER PER BIT ERROR PER BIT ERROR
: K
| 1-shift Baudot 5.1 1.0 1.0
3-shift Baudot 4.5 1.0 1.1
Comma-free 4.0 1.5 1.5
Huf fman 3.9 2.2 2.4 *

* A single bit error led to a maximum of 14 output
characters for this code.




to a comma-free code most nearly matching the Huffman code in
compression. The Huffman code results are for the code
constructed with the lowest number of decoded character errors
per bit error. The summary results have been rounded to a single
significant place to remove the small dependency of the values
obtained on the particular narrative used as a basis for
estimating character probabilities of occurrence.

Findings
The main findings of this analysis were:

(1) The normal Baudot code uses a single shift key to
reduce the number of bits required to transmit information from 6
to about 5.06. Generalizations of this construction can further
reduce the average number of bits required to around 4.5 bits-
per-character while maintaining a basic block structure.

(2) A suffix/prefix comma-free code can be constructed
wvhich provides nearly the same data compression as a Huffman code
provided that the probabilities of the occurrence of the
different characters decrease in a regular manner. For the
character set and probabilities of occurrence of the characters
of the set used in the Huffman simulation, the penalty varied
from a low of .05 bit per character to a high of .18 bit per
character for the four narrative files investigated for using a
suffix/prefix comma-free code instead of a Huffman code.

(3) A single bit error can lead to very long sequences of
decoding errors when Huffman codes are used. Sequences of output
characters in error exceeding 90 characters in length were
observed.

(4) It was found that operator interactive processing of the
output narrative file could be used to correct about three-
quarters of the Huffman decoder errors. Not all the errors could
be detected by the operator, given only the output text with
errors; some detected errors could not be corrected if multiple
bit errors had occurred in the same code word.

(5) 1In a channel with errors, the performance of the
suffix/prefix comma-free codes, which provided the best
compression, only depends on whether the code is constructed
using a suffix and a prefix or whether it is constructed using
two suffixes or two prefixes. The codes in the two categories
provide very similar performance in a channel with errors.

(6) A single bit error can lead to at most two character
errors for the above prefix/suffix codes. This result follows
from the fact that a single bit error can lead to at most one
comma being inserted incorrectly by the suffix/prefix comma
insertion algorithm for these codes.
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(7) A large proportion of the compression gains achievable
using Huffman and comma-free codes is provided by the coding of
the frequently occurring blank by a short code word.

Conclusions

The following conclusions were drawn as a result of the
investigation:

(1) Comma-free codes significantly outperform Huffman codes
in an error channel. They provide nearly the same compression
and have significantly fewer decoded or output character errors
than Huffman codes.

(2) A generalized Baudot code offers modest compression
gains (13%) with only one decoded or output character error per
bit error.

(3) Comma-free codes probably could be designed with some
error correction incorporated into the encoding of end-of-line
characters to provide moderate compression gains (around 30%).

(4) More significant compression gains should be achievable
by basing either Huffman or comma-free code word assignments to
characters on the character and on the one or more characters
immediately preceding it in the message.

Recommendations

We make the following recommendations.

(1) The analytical results obtained for the suffix-prefix.
and suffix-suffix comma-free codes in a channel with errors
should be extended to more general comma-free codes.

(2) The most promising codes, i.e., the comma-free codes
and the generalized Baudot codes, should be exercised on real
Navy messages to verify that the findings reported herein apply
to Navy messages.

(3) The most promising codes should be identified to encode
characters using their conditional probabilities of occurrence
(conditioned on receipt of the one or two previous characters).
The techniques developed in this report can be used to identify
the best codes for this application.

(4) Error correcting techniques, such as operator
interaction or soft-decision logic, should be investigated for
use with comma-free codes. Until this has been done, it is
difficult to select among the available comma-free codes giving
the same compression.
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INTRODUCTION

It is desirable to increase the channel capacity of the
submarine broadcast system. One technique which has been
suggested for doing this 1s to more efficiently encode the
narrative portions of messages through use of data compression
codes. A data compression code assigns short binary code words
to symbols with a high frequency of occurrence, and long code
words to symbols with a low frequency of occurrence.
Difficulties arise when data compression codes are used in
channels with errors, because one bit error can lead to multiple
character errors due to temporary loss of character
synchronization.

This report investigates the behavior of Huffman, Comma-
free, and generalized Baudot codes for alphabets of 58 characters
in channels with errors. Some preliminary results are provided
on the feasibility of correcting errors in narrative portions of
messages by using narrative context.

SCOPE

Data compression codes have been used in error-free
channels, but to our knowledge they have not been used in
channels with errors. Consequently, their performance in
channels with errors has not been established. This paper
represents an initial study of the behavior of data compression
codes suitable for encoding the 58-character Baudot code used for
Navy messages in a channel with errors.

Results are presented for an alphabet derived from the 95
character set of the IBM PC and for processing narrative files
stored on its hard disk. These files were edited to use only
capital letters and certain seldom used symbols were deleted,
namely " [, 1, {, },!", to obtain an alphabet the same size as
that required for encoding the Baudot dictionary. The decision
to use the reduced IBM PC character set and available document
files was made so that results could be obtained without the
development of a Navy message data base, which was not available
in IBM PC compatible format when this analysis was undertaken.

The analysis is complicated by the fact that the error
properties of both Huffman and error-free codes depend on the
specific choices of bits and code words, respectively, used to
construct the codes for a particular application. This means
that codes exist which provide the same data compression gains
with differing error properties. The main thrust of this paper
is to identify the Huffman codes and the comma-free codes giving
the best performance in a channel with errors and compare their
performance with that of generalized Baudot codes. This involves
characterizing the relationships between character errors and bit
errors for the codes.




An additional complication arises in the analysis of comma-
free codes: the construction process used does not depend
explicitly on the probabilities of occurrence of the characters
to be encoded and therefore a given code may not be well matched
to the statistics of the character set. An approach is presented
which allows the determination of the comma-free code which gives
the best data compression, which can be constructed using the
procedure developed by R. A. Scholtz. This procedure was used to
select the comma-free rode which gives the best data compression
for the 58-character set used for the Huffman simulations.

APPROACH

Huffman codes are known to provide the best data compression
possible for variable length codes. This property is ensured by
the code construction process itself which is based directly on
the probabilities of occurrences of the characters to be encoded.

The comma-free codes analyzed in this report are known as
suffix/prefix codes and are constructed using a sequential
procedure found by R. A. Scholtz. This procedure does not
utilize probabilities of occurrence to guide the construction
process, It was necessary for us to develop an approach to match
the word lengths of available prefix/suffix codes to the
character probabilities of occurrence to provide comparable data
compression to that automatically provided by the Huffman codes.

Even after specifying the distribution of word lengths of
Huffman or comma-free codes, there are degrees of freedom in the
construction process. It was discovered that the error
properties of the codes depended on the choices made in the
construction process. This report has been structured to reveal
these dependencies and to provide a technique for the selection
of the compression codes providing the best performance in a
channel with errors.

The insights provided by the investigation of Huffman codes
and comma-free codes led to the identification of certain natural
extensions of the presently used Baudot codes. A comparison of
the performance of these codes with those of Huffman and comma-
free codes provides a performance gauge against which the latter
codes can be assessed.

The Huffman construction process has a great number of
degrees of freedom. The impact of bit errors on character
synchronization and character errors is very context-dependent;
therefore, an analytical study of the dependency of error
statistics on the Huffman construction process could not be
performed. A simulation program was written and exercised for
many different Huffman codes by altering the specific choices in
the Huffman construction process for a fixed character set and
fixed probabilities of occurrence for the characters in the
character set. The best compression code found in this manner
was then further exercised to provide baseline data compression
and statistical error properties for Huffman codes.
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Unlike the Huffman code, the number of degrees of freedom in
the comma-free construction process depends on the number of
sequential steps and not on the character set size. The
performance of codes constructed in a few steps can be
established analytically. Then we found a very surprising thing,
the comma-free code which best matches the compression
performance of the Huffman codes for the narrative files
processed only involved a simple two-step construction. For two-
step constructions, the available degrees of freedom for comma-
free codes only leads to two code sets with differing error
statistics. For these codes the impact of bit errors on both the
algorithm which identifies code word (the comma insertion
algorithm) and the character decoding process is characterized in
terms of the bit within a code word in error.

The remainder of the report is broken into three major
sections and a short summary section.

The first major section provides descriptions of the
construction processes for generalized Baudot, Huffman, and
comma-free codes. Examples of Huffman and comma-free codes are
presented to illustrate the dependency of the performance of the
codes in a channel with errors on the code construction process.
This section provides background and motivation for the remaining
sections of the report.

The second major section establishes the data compression
which is to be expected for generalized Baudot codes, Huffman
codes, and comma-free codes used to encode narrative files based
only on estimated probabilities of occurrence of the characters
in the narrative files. A symbol set consisting of 58 characters
was utilized for this work to best simulate the 58 Baudot
character set in use for Navy messages.

The third major section describes the performance of
generalized Baudot, Huffman and comma-free codes in a channel
with errors.

In the last section, the best codes found are discussed and
recommendations submitted.

DESCRIPTION OF DATA COMPRESSION CODES

This section of the report contains three subsections. The
first subsection describes a family of compression codes which
have a structure very similar to that of the presently used
Baudot code. We call these codes generalized Baudot codes. The
second and third subsections describe Huffman and comma-free
codes, respectively, with emphasis on the description of the
construction processes for the codes and their impact on the
performance of the codes in channels with errors.




Generalized Baudot Codes

The Navy Baudot code now being used can be viewed as
consisting of two kinds of characters: information carrying
characters and shift characters. Receipt of a shift character
code word changes the decoding of the next code word--the receipt
of the shift character by itself does not increase the
information passed to the receiver.

The existing Baudot alphabet consists of 57 information
characters and one shift character. If a simple block code was
used 6 bits would be required. However, if a 5 bit code is used
instead, and one of the 32 code words is used as a shift
character, 3! information characters can be transmitted using S
bits and the remaining 26 information characters can be
transmitted by using the 5 bit code word reserved for a shift
character followed by a 5 bit code word. 1In effect, the
remaining 26 information characters are transmitted using 10
bits.

The shift character can be implemented as either a one-
character shift or as a toggle shift. We discuss codes using the
shift character as a one-character shift., This is the case
amendable to analysis in terms of character probabilities of
occurrence.

A simple example suffices to indicate the compression
provided by the use of shift characters. Suppose we wanted to
encode six characters: a,b,c,d,e, and f, and that the probability
of occurrence of a,b, or ¢ was .75 and of the remaining
characters .25. 1If the six characters were encoded with a block
code then 3 bits would be required per character. Suppose that
"00" was used to transmit "a", "01" for "b", "10" for "c", and
"11" a shift character. Then "1100" could be used to transmit
"d", "1101" to transmit "e", and "1110" to transmit "f"., The
average number of bits needed to transmit a character using this
code is given by (.75)(2) + (.25)(4) = 2 + (.25)2 = 2.5 bits-per-
character.

More than one shift character could be used at each stage
and more than one shift in succession leading to a whole family
of different Baudot-like codes, which we call generalized Baudot
codes. For example, suppose again that we are building a code
using blocks of two characters. We could reserve two of the 2-
bit code words for shift characters. Then we would have two 2-
bit code words, and eight 4-bit code words available for encoding
information characters. We could use some of the 4-bit code
words as shift characters to generate 6-bit code words, and so
on,

The data compression provided by any code is determined by
the distribution of code word lengths in the code. A generalized
Baudot code is specified by its basic code length and the number
of characters used as shift characters for each multiple of the




block length. The generalized Baudot codes of most interest for
Navy messages use code lengths which are multiples of 3, 4, or 5.

Huffman Codes

Using only the probabilities of a set of characters being
transmitted, Huffman provided an organized technique for
constructing efficient codes. Huffman codes use the minimum
number of bits on the average to transmit characters from the
set. The procedure for constructing a Huffman code is
illustrated in the following example {(reference 1].

Suppose that we wish to code five characters: a, b, ¢, 4,
and e with the probabilities 0.125, 0.0625, 0.25, 0.0625, and
0.5, respectively. For this example, which is illustrated in
figure 1, the Huffman procedure first involves three regroupings
of five characters.

Grouped characters are indicated by (b,d), (a,b,d), and
(c,a,b,d) along the top of figure 1. At each stage in this first
step, the two characters or group of characters with the lowest
probabilities are grouped. A group of characters is assigned the
probability obtained by summing the probabilities of the
characters in the group.

The Huffman code is constructed based on the characters
which have been grouped at each stage by proceeding from right to
left. Two of the many possible codes which can be assigned to
the original character set are illustrated in figqure 1.

We discuss the construction of Code A first. Step 1:
assign "0" to the most likely character "e" and "1" to the
character set (c,a,b,d). These bits are the first bit in the
code words assigned to the characters. The character "e" is
distinguished from the characters "c", "a", "b", and "d" by the
fact that its code begins with "0" and their codes begin with
"1"., Step 2: no bit is assigned to "e", and a second bit is
assigned to the remaining characters. This bit is chosen to
distinguish "c¢" from "a", "b", and "d"--"0" is shown assigned to
"c®" and "1" assigned to the other characters. Step 3: no
additional bits are assigned to "e" and "c" and additional bits
are assigned to distinguish "a" from "b" and "d". Step 4: no
bits are assigned to "e", "c", and "a" and bits are assigned to
distinguish "b" and "d".

Code B, also shown in figure 1, differs from code A in that
at step 1, the character "e" is assigned "1" and the characters
"c", "a", "b", and "d" begin with "0". The remaining steps are
the same. Note, that "0" and "1" can be assigned in either way
at each step, leading to the construction of 16 different codes
for the example shown in figure 1.

The example in figure 1 is very regular in that no
reordering is necessary during the grouping of characters at the
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different stages of the construction process. It is worthwhile
to note that the Huffman coding procedure can lead to block
coding when all of the character probabilities are the same.

For example, consider the case of eight characters:
a,b,c,d,e,f,g, and h, each having a probability of 0.125. Figure
2 illustrates a Huffman construction process leading to a block
code for this case. Note, the characters are listed in the
natural alphabet order. The first step leads to grouping g and
h, the next step to grouping e and f, the next to grouping c and
d, and the fourth step to grouping a and b. Each group is
assigned a probability of 0.25. The next two steps leads to
grouping e,f,g, and h, and to grouping a,b,c, and d. Each of
these groups is assigned a probability of 0.5.

In general, the Huffman code construction process for
characters with differing probabilities of occurrence leads to a
code with some characters having code words of the same length
and other characters having code words of differing lengths.

Figure 3 illustrates the data compression achievable from
either code A or Code B (as well as any of the other codes
constructable by the Huffman process) described in figure 1. The
gain is gauged by comparing the expected average number of bits
to transmit a character for the Huffman code with a fixed length
code. The average code word length (L) for the example Huffman
code is given by:

L = 0.125(3) + 0.0625(4) + 0.25(2) + 0.0625(4) + 0.5(1)
L = 1.875

The Huffman code has the smallest average code word length.
However, it has variance (V):

2 2 2
V= 0,125(3 - 1.875) + 0.0625(4 - 1.875) + 0.25(2 - 1.875)

2 2
+ 0.0625(4 - 1.875) =+ 0.5(1 - 1.875)

= 1.109375

By comparison, Block Coding, which assigns codes of equal length
to each symbol, would have produced an average length of 3 with
zero variance.

The following examples show how cne bit error in Huffman
coding can cause errors in more than one character when decoding;
extra characters may be introduced or some characters may be
dropped. In each case, the first bit of the sequence was
changed. The surprising dependency of character errors on the
choices made in the Huffman code construction process motivated
this study. This phenomenon is illustrated in figure 4.
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Figure 4 shows the impact of introducing a single bit error
into the code word assigned "a" for Code A and Code B. For
Huffman codes, and other variable length block codes, the impact
of an error depends on the characters following "a". 1In the
example, "abcde" is being transmitted. The impact of the single
bit error is enclosed by brackets and an error count shown to the
right for each of the two Huffman codes.

For code A, an error in the first bit of the code word for
"a" leads to it being incorrectly decoded into the two characters
"e" and "c"; i.e., one input character is decoded in error and
two erroneous characters are output.

For code B, an error in the first bit of the code word for
"a" leads to the next three characters being decoded in error for
a total of 10 characters being output erroneously.

For code A, the bit error does not lead to loss of character
synchronization; while for code B, it does. 1In general, bit
errors do lead to loss of synchronization for Huffman codes.

Some codes have been discovered which tend to lose character
synchronization less often and for shorter periods of time than
Huffman codes. These codes utilize an intermediate processing
step to define code words (comma insertion) and are called comma-
free codes. Comma-free codes are discussed in the next
subsection.

The error propagation dependency on Huffman code illustrated
by figure 4 was potentially so important that a preliminary
simulation was conducted to preclude the possibility that the
example was a fluke. The simulations were for the two Huffman
codes associated with the example presented in figure 1.

Table 1 summarizes the results of introducing a bit error in
the first bit of the first code word. This code word is the
encoded first character of the five characters shown in the
"input char[acter]"” columns of the table; the impact of this bit
error on the decoding process is shown by presenting the
characters output from the decoder in the "output char{acter]"
columns.

Two statistics summarize the experimental results presented
in table 1: the number of input symbols decoded in error (2.77
veighted average) and the number of output symbols in error (2.81
veighted average). This second statistic saows on the average
how long it takes to regain character synchronization after a bit
error is introduced.

The same simulation was run for different Huffman codes
obtained by changing the first, second, or third bit of each
codeword. The results shown in figure 5 show that there 1s a
very definite dependency of the error properties on the choices
made in constructing a Huffman code.

M




TABLE '. ERROR RECOVERY TEST USING A FIVE CHARACTER ALPHABET

INPUT OuTPUT INPUT OUTPUT INPUT OUTPUT
CHAR CHAR CHAR CHAR CHAR CHAR
abcde eeebcde bdeac eebceac dbcae eecbcae
abced eeebced bdeca eebceca dbcea eecbcea
abdce eeebdce beacd eeaacd dbeac eecbeac
abdec eeebdec beadc eeaadc dbeca eecbeca
abecd eeebecd becad eeacad dcabe eeccabe
abedc eeebedc becda eeacda dcaeb eeccaeb
acbde eeecbde bedac eeadac dcbae eeccbae
acbed eeecbed bedca eeadca dcbea eeccbea
acdbe eeecdbe cabde eceebde dceab eecceab
acdeb eeecdeb cabed eceebed dceba eecceba
acebd eeecebd cadbe eceedbe deabc eeceabc
acedb eeecedb cadeb eceedeb deacb eeceach
adbce eeedbce caebd eceeebd debac eecebac
adbec eeedbec caedb eceeedb debca eecebca
adcbe eeedcbe cbade ecebede decab eececab
adceb eeedceb cbaed ecebeed decba eececba
adebc eeedebc cbdae ecebcae eabcd ceebcd
adecb eeedecb cbdea ecebcea eabdc ceebdc
aebcd eeeebcd cbead eceaad eacbhd ceecbd
aebdc eeeebdc cbeda eceada eacdb ceecdb
aecbd eeeecbd cdabe ececabe eadbc ceedbc
aecdb eeeecdb cdaeb ececaeb eadcb ceedcb
aedbc eeeedbc cdbae ececbae ebacd cebecd
aedcb eeeedchb cdbea ececbea ebadc cebedc
bacde eebecde cdeab ececeab ebcad cedad
baced eebeced cdeba ececeba abcda cedda
badce eebedce ceabd ebebd ebdac cebcac
badec eebedec ceadb ebedb ebdca cebcca
baecd eebeecd cebad ebbed ecabd cceebd
baedc eebeedc cebda ebbca ecadb cceedb
bcade eedade cedab ebcab ecbad ccebed
bcaed eedaed cedba ebcba ecbda ccebca
bcdae eeddae dabce eecabce ecdab ccecab
bcdea eeddea dabec eecabec ecdba ccecba
bcead eedead dacbe eecacbe edabc cecabc
bceda eededa daceb eecaceb edachb cecach
bdace eebcace daebc eecaebc edbac cecbac
bdaec eebcaec daecb eecaechb edbca cecbca
bdcae eebccae dbace eecbace edcab ceccab
bdcea eebccea dbaec eecbhaec edcba ceccba

The results presented in table 1 were derived using the
following correspondence between characters and code words:

a <-> 110 d <-> 11N
b <-> 1110 e <-> 0
c <~-> 10

12
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Comma-free Codes

Comma-free codes are binary codes so constructed that it 1is
possible to identify individual code words prior to decoding the
received bit stream. 1In this report, we restrict our attention
to a particular family of comma-free codes, known as
"suffix/prefix" codes, found by R. A. Scholtz [reference 2].

In order to illustrate the ideas involved in Scholtz's
construction process, we choose a particularly simple example
derived from a somewhat longer example presented in his paper.
Figure 6 illustrates the Scholtz construction process for a code
constrained to a maximum code length of five.

Scholtz constructs his code words sequentially. The sets of
code words available to be assigned to characters are denoted by
"Cc", "C'", and "C''"™ in the example. Starting with the set "C",
consisting of two code words "0" and "1", the code set "C'" is
constructed by taking one of the two original code words and
using it as a suffix an arbitrary number of times for the other
code word. We chose to use "1" as a suffix and retain "0" as a
code word in "C'". Any of the words in "C’'” could be used as a
suffix to create new code words and thus construct a new set of
code words "C''", We choose to use the shortest code word "0" as
a suffix to construct "C''", As a result "C''" contains no code
words of length one.

We have presented the code words in "C''"™ in rows according
to code word length and by columns beginning with still available
code words of "C'". Additional code words could be constructed
by choosing, for example, "01" as a suffix, and excluding it as a
code word in the new set "C'''" constructed from "C''",.

Generally speaking, new code words can be constructed by
either using suffixes or prefixes. The process can be carried
out any number of times,

Figure 7 illustrates the process used to construct "commas”
for the code illustrated in figure 6. Figure 7 shows the comma
construction process for an error-free channel and figure 8
illustrates the impact of errors on the construction process.

Suppose that the characters to be transmitted have been
assigned the code words shown in brackets in figure 8. The
transmitted and received bit stream would consist simply of the
bits enclosed in these brackets with no indication of where one
code word ended and another began.

Figure 7 shows the three-step process used to insert
"commas”", i.e., to delineate the code words which were sert. The
comma insertion process parallels the code construction process.
It proceeds by first inserting commas between all the bits and
then successively deleting those according to rules based on the
suffix choices.

14
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To aid the reader in following the process, we have
maintained the bits in alignment from step-to-step in figure 7--
the spaces introduced for this purpose are not interpreted by the
decoder. Corresponding to choosing "1" as a suffix, commas are
removed preceding "1"s in the second step of the comma insertion
process. All the code words in "C'" are now isolated. Next,
corresponding to choosing "0" as a suffix to construct "C''", the
first comma is removed whenever ", 0," occurs. After the
deletion of these commas, all the codes words have been isolated.

Figure 8 traces through the impact of three character errors
on the comma insertion process. The transmitted bit stream is
the same as that presented in figure 7. The received bit stream
shown below the arrow labeled by "errors"” has bit errors in the
third bit of the first word, the second bit of the fourth word,
and the second bit of the next-to-last word. The deletion comma
steps leads to the last bit stream. It is easy to see that the
leftmost bit error would lead to a character decoding error, but
not loss of character synchronization; the second bit error would
lead to the previous character and the character with the bit
error both being decoded incorrectly, i.e., to lost of character
synchronization; the rightmost bit error also leads to the
previous character and the character with the bit error being
decoded incorrectly and loss of character synchronization.

Even with three bit errors introduced into three of eight
characters, three characters were still correctly decoded in the
above example. This example shows less impact of errors than
previously shown by the Huffman code example.

There are choices in the construction of comma-free codes
that would lead to the same distribution of code word lengths,
and hence to the same data compression. The behavior of the code
in an error channel depends on these choices. This can be
illustrated by considering two particularly simple codes that
have the same distribution of word lengths. One code is
constructed by first using "1" as a suffix and then "0" as a
prefix. The second code is constructed by first using "1" as a
suffix and then "0" as a suffix, namely the code illustrated for
up to length five code words in figure 6. The first code will be
referred to as the suffix-prefix code and the second code as the
suffix-suffix code. (These codes turn out to be very important
for practical applications; this will be discussed in a later
section.)

The code words of either of the two codes have lengths 2 to
m > 1. The code words are easy to describe mathematically:

(a) suffix-prefix code words are of the form

k "0"s followed by h "1"s with k > 0, h > 0, k + h <=m

17
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(b) suffix-suffix code words are of the form

1-"0" followed by k "1"s followed by h "0"s with
k >0, h>=0, 1 +k + h<=m

It is particularly easy to describe the impact of bit errors
on the comma insertion process of the suffix-prefix code. Figure
9 summarizes the impact of bit errors on the process as a
function of where the bit error occurs in a code word bracketed
by two other code words. Four cases are distinguished: first bit
in error, either of the two transition bits from "0" to "1" in
error, last bit in error, and a central "0" or "1" bit in error.

The comma insertion process can lead to code words which are
longer than m bits and therefore not decodable. 1If the first bit
is in error, and k2 > 1, then this occurs only if the first word
has maximal length m; if the last bit is in error, and h2 > 1,
then this occurs only if the last word has maximal length m. In
general, if the first bit is in error and k2 > 1, a comma is
inserted (incorrectly) one position to the left; if the last bit
is in error and h2 > 1, a comma is inserted (incorrectly) one
position to the right. 1If the first bit 1s in error and k2 = 1,
then the comma between the first and second word is deleted
leading to a code word of the length k1 + h1 + 1 + h2., The new
word being non-code word if this expression exceeds m. Likewise,
if the last bit is in error and h2 = 1, the comma between the
second and third word is deleted leading to a code word of length
k2 + 1 + k3 + h3, which can be non-code word if this expression
exceeds m.

Errors in the transition bit, namely the k2-th bit or the
(k2+1)-th bit, with k2 > 1 and h2 > 1, does not impact the
positions at which commas are inserted. The resulting erroneous
word is always decoded as a single character.

Errors in the middle of a string of "0"s or in the middle of
a string of "1"s lead to the insertion of a spare comma within
the middle word. The middle word is always decoded as two
characters for these cases.

In summary, this survey of the impact of bit errors on the
suffix-prefix comma insertion and decoding process has shown that
a single bit error can lead to at most one comma being inserted
incorrectly. All the following possibilities occur: the comma
between the first two words can be deleted or moved to the right,
the comma between the second and third words can be deleted or
moved to the ieft, or a new comma can be inserted splitting the
middle word. However, it can happen the commas are all inserted
correctly and only a decoding error occurs. A single bit error
leads to either one or two character errors so that, unlike
Huffman codes, the impact of a single bit error on character
decoding is strictly limited.

A discussion of the impact of bit errors on the suffix-
suffix code is somewhat more complicated than for the suffix-

19
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prefix code because the suffix-suffix code words have a more
complicated structure.

Figure 10 illustrates the impact of errors for different bit
positions in the middle code word of three successive code words.

The impact of an error in the first bit of the middle word
cepends on the first word, namely on whether or not h1 > 0. 1If
h1 > 0 then the middle word "steals a 0 " from the first word:;
if h1 = 0 then the comma between the first and middle word is
deleted and the second word is "added onto" the first word.

A bit error in the second bit position of the middle word
leads one or more "0"s being added to the first word depending on
whether or not k2 > 1,

Errors at other bit positions lead to similar behavior for
the suffix-suffix code as described for the suffix-prefix code.

Our brief discussion of the suffix-suffix code indicates a
clear performance difference between the suffix-prefix code an-
the suffix-suffix code in an error channel. Both codes share the
property that a single bit error leads to at most two successive
characters being decoded in error and the misplacement of at most
one comma.

DATA COMPRESSION

This section contains four subsections. In the first
subsection, the probabilities of occurrence of the characters
appearing in four different narrative files are discussed. In
the next three sections, the generalized Baudot codes, Huffman
codes, and comma-free codes providing the best data compression
for character encoding based on these probabilities of occurrence
are identified.

Introduction

Four narrative files resident on the hard disk of the IBM PC
were used to investigate compression and error properties of data
compression codes. The data compression possible using character
encoding is determined by the probabilities of occurrence of the
characters in the data being encoded. In this section, data
compression results are obtained for encoding based on character
probabilities of occurrence in the four narrative files.

Table 2 summarizes the general properties of the four
narrative files used throughout this study. Table 2
characterizes the four narratives in terms of the number of lines
of text and the number of bytes in them. The four narratives
were all technical documents involving some equations.

Table 3 completes the description of the narratives relevant
to their use for data compression investigations by presenting
the probabilities of occurrence for the different characters for

21
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TABLE 2. SUMMARY OF NARRATIVE FILES

(IBM PC MASS-11 FILES)

NUMBER OF NUMBER OF .

NARRATIVE

FILE DESCRIPTION BYTES LINES |

I INVENTION DISCLOSURE OF NESTED 31,744 612 |
SPATIAL-TEMPORAL INTERFERER
SUPPRESSOR

11 INVENTION DISCLOSURE OF SPATIAL 28,672 503
COMBINER

111 MEMO RE:MEECN MTG OF 12,288 207
19-20 NOV 1985

v ADAPTIVE ALGORITHM PERFORMANCE 13,312 290
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TABLE 3. CHARACTER PROBABILITIES OF OCCURRENCE FOR
FOUR NARRATIVE FILES

A

NARRATIVE NARRATIVE NARRATIVE NARRATIVE

" CHARACTER FILE I FILE II FILE III FILE IV
- - 0.3085 0.3171 0.2851 0.4095

E 0.0855 0.0865 0.0882 0.0664

T 0.0636 0.0677 0.0585 0.0492

N 0.0543 0.0537 0.0483 0.0407

0 0.0416 0.0518 0.0505 0.0420

I 0.0513 0.0511 0.0537 0.0426

A 0.0455 0.0450 0.0499 0.0434

R 0.0392 0.0421 0.0471 0.0438

. s 0.0372 0.0391 0.0440 0.0367
H 0.0277 0.0263 0.0291 0.0162

C 0.0193 0.0232 0.0245 0.0216

L 0.0233 0.0218 0.0262 0.0226

D 0.0191 0.0206 0.0327 0.0165

U 0.0142 0.0185 0.0147 0.0165

P 0.0163 0.0170 0.0171 0.0164

M 0.0120 0.0162 0.0230 0.0150

F 0.0151 0.0141 0.0190 0.0169
.6 0.0117 0.0121 0.0163 0.0109
. B 0.0049 0.0101 0.0017 0.0067
Ly 0.0136 0.0099 0.0078 0.0077
oW 0.0147 0.0082 0.0080 0.0030
; ) 0.0073 0.0076 0.0075 0.0087
Iy 0.0050 0.0058 0.0074 0.0026
! , 0.0062 0.0001 0.0036 0.0060
! ) 0.0016 0.0039 0.0024 0.0024
| ( 0.0016 0.0039 0.0024 0.C024
- 0.0047 0.0034 0.0044 0.0053
C 0.0078 0.0024 0.0015 0.0054
LK 0.0040 0.0023 0.0014 0.0008
L 0.0003 G.0016 0.0003 0.0018

NOTE: " " denotes blank
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TABLE 3. CHARACTER PROBABILITIES OF OCCURRENCE FOR
FOUR NARRATIVE FILES (CONT.)

!

NARRATIVE NARRATIVE NARRATIVE NARRATIVE
CHARACTER FILE I FILE I1I FILE II!I FILE IV
J 0.0016 0.0014 0.0011 0.0000
X 0.0018 0.0013 0.0017 0.0008
2 0.0059 0.0013 0.0016 0.0031
+ 0.0031 0.001 0.0000 0.0000
= 0.0019 0.0010 0.0002 0.000C
Z 0.0002 0.0008 0.0011 0.0004
Q 0.0014 0.0008 0.0012 0.0004
3 0.0015 0.0007 0.0010 0.0018
0 0.0009 0.0005 0.0014 0.0050
~ 0.0000 0.0005 0.0000 0.0000
" 0.0003 0.0003 0.0003 0.0000
4 0.0000 0.0003 0.0002 0.0001
" 0.0014 0.0002 0.0000 0.0000
: 0.0006 0.0002 0.0008 0.0004
8 0.0001 0.0002 0.0005 0.001%
E 0.0000 0.0002 0.0000 0.0000
S 0.0001 0.0002 0.0005 0.0014
9 0.0000 0.0002 0.0007 0.0034
* 0.0021 0.0002 0.0000 0.0000
; 0.0000 0.0002 0.0006 0.0000
6 0.0000 0.0001 0.0002 0.0015
> 0.0000 0.0001 0.0001 0.0000
7 0.0000 0.0001 0.0G0°" 0.0001
' 0.0000 0.0001 0.0002 0.0004
< 0.0000 0.0000 0.0002 0.6000
! 0.0000 0.0000 0.0001 0.0000
# 0.0018 0.06000 €C.0000 5.0000
$ 0.0000 0.0000 c.0001 0.0000

NOTE: " " denotes blank




each of the four narrative files. The character ordering is
based on the probabilities of occurrence of the characters. The
probabilities of occurrence of the characters are similar for the
four narrative files. This similarity becomes clearer when
cumulative probabilities of occurrence are examined for the
characters partitioned in subsets of 15 characters. Table 4
presents the sums of the probabilities of occurrence for the
characters in nominal 15 character subsets.

In the next subsection, we show how the probabilities in
table 3 can be exploited through the design of codes with a
block-like structure (generalized Baudot codes). In the next
subsection, the average number of bits-per-character is
calculated for the Huffman codes constructed using these
probabilities of occurrence. In the third subsection, a
technique is presented for matching as closely as possible the
distribution of available word lengths for comma-free codes to
those provided by a Huffman code.

Table 3 suggests that if we could match the code word
lengths of the words assigned to the 10 to 15 characters with the
highest probabilities of occurrence, we should achieve nearly the
same compression for a comma-free code as for a Huffman code. ‘
This turned out to be the case and motivated the order chosen to
present the material in this section.

Generalized Baudot Codes

The encoding of a S8-character set with a block code
requires 6 bits. The standard Baudot code uses a shift character
so that a structured code using 5 bits or 10 bits (in effect) can
be utilized to code the S58-character set.

The shift symbol is not an information carrying character;
i.e., the shift by itself transmits no information. The bits-
per-character for the best single shift code is obtained as

S + S(probability of occurrence of any of the 27 least
commonly occurring characters)

The average number of bits-per-character turn out to be 5.08,
5.06, 5.06, and 5.06, for narrative files I, II, III, and 1V,
respectively. Note, therefore, that the Baudot code represents a
compression gain over block coding of 6/5 = 1.20. The
compression gains for Huffman and comma-free codes should be
relative to the Baudot code (not a block code). For this reason,
the compression gains implied by the results obtained using these
codes in this study are less than those generally quoted in the
literature on these codes. In the literature, the block code 1is
usually taken as the basis for compression calculations.

Consider a generalized Baudo: code using more than one shift
symbol. Suppose, in particular, that the shifts were used to
produce a code with 15 words of length 4, '5 of length 8, 15 of
length 12, and 13 of length 16. One of the first 16 code words
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TABLE 4. PROBABILITIES OF CHARACTER OCCURRENCE FOR ANY

CHARACTER IN 15 CHARACTER SUBSETS OF THE
FOUR NARRATIVE FILES

| NARRATIVE CHARACTERS CHARACTERS CHARACTERS CHARACTERS
! FILE 1-15 16-30 31-45 46-58

I .8459 . 135 .0158 .0002

Il .882 .106 .011 .001

III .879 .108 .012 .00

v .884 .102 .014 .000
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is a shift, i.e., leads to a different interpretation of the next
code word, one of these code words is reserved to lead to still
another interpretation of the next ccde word, and one of these is
reserved to lead to still another .nterpretation of the next code
word. In each case a shift only applies to the next code word.
The number of bits-per-character for this particuiar code is
given by:

4 + 4 (probability of occurrence characters 16-30)
+ 4 (probability of occurrence characters 31-45)
+ 4 (probability of occurrence characters 46-58)

where the characters have been successively numbered beginning
with the most commonly occurring character and ending with the
least commonly occurring character. The average number of bits-
per-character required to transmit information using this code is
4.68, 4.52, 4.54, and 4.52, for narrative files I, I1, III, and
IV, respectively.

Further generalizations of Baudot codes do not seem
promising. For example, an attempt to match the distribution of
word lengths for Huffman codes by a code build in terms of
multiples of 3 leads to the following code word structure: 6
words of length 3, 12 words of length 6, 30 words of length S,
and 10 words of length 12. The average number of bits-per-
character for this code was found to be 4.5 bits-per-character
for narrative file I. It provides slightly greater compression
with a far greater complexity that the code based on multiples of
4.

Huffman Codes

The structure of a Huffman code in the sense of its
distribution of lengths of code words is determined by the
probabilities of occurrence of the 58 characters in the narrative
file (provided some convention to treat equi-probable sets in the
construction process is adopted). Table 5 summarizes the code
words assigned by the particular computer implementation of the
Huffman constructed process that we used in our study. These
code word lengths were obtained using the probabilities of
occurrence of the characters presented in table 3 for the four
narrative files. The order of the characters is the same in
table S as that in table 3 and the characters ate partitioned
into sets of 15 characters to facilitate our discussion of table
5.

Recall that the probability of occurrence of one of the
first 1S characters listed in table 5 exceeds .84 for all the
narrative files. The word lengths assigned to the first 15
characters based on the probabilities of occurrence of the
characters in the different narrative files never differ by more
than one bit. The word lengths are nearly the same for the next
15 characters and tend to differ greatly only for the least
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TABLE 5. HUFFMAN CODE WORD LENGTHS FOR FOUR NARRATIVE FILES

WORD LENGTHS WORD LENGTHS
‘ FOR NARRATIVE FILE FOR NARRATIVE FILE
_ CHAR I 11 III IV CHAR I 11 III IV
"o 2 2 2 1 J g 9 10 22
E 3 3 4 4 X 9 9 9 11
T 4 4 4 4 2 10 8 0 9
N 4 4 4 5 ¥ 10 8 18 15
0 4 5 4 5 = 10 9 13 21
I 4 4 4 5 z 0 12 10 12
A 4 4 4 5 Q 10 10 10 12
R 5 5 4 5 3 10 9 10 10
s 5 5 5 5 0 1M 10 9 8
H 5 5 5 6 ~ 1M 25 19 27
C 5 6 5 6 " 1M 12 11 18
L 6 5 5 6 4 12 15 12 13
D 6 6 5 6 ~ 129 19 27
U 6 6 6 6 : 12 11 10 1
P 6 6 6 6 8 12 14 11 10
M 6 6 6 6 @ 12 18 16 24
F 6 6 6 6 5 12 12 11 10
.G 6 6 6 7 9 13 22 10 9
. B 7 8 6 8 * 12 9 17 26
PV 7 6 7 7 : 12 24 11 19
S 7 6 7 9 6 13 19 13 10
. 7 7 7 7 > 13 17 13 23
Y 7 8 7 9 7 14 20 13 14
, 7 7 8 8 ' 15 21 12 11
) 8 7 9 9 < 16 25 12 20
( 8 7 9 9 ! 17 23 13 17
- 8 8 8 8 # 18 13 15 25
1 9 7 9 8 % 18 16 14 16
K 9 8 9 11
/ 9 1M 119

NOTE: " " denctes blank
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probable characters. This means that use of any of the four
narrative files as a training file should lead to similar
compression results for encoding the narrative files.

Some of the differences between word lengths presented in
table 5 could have been lessened by adopting a different
convention for equi-probability character sets. 1In particular, a
different convention should have been adopted for treating
characters with zero probability to ensure that they would all be
assigned code words of the same length or nearly the same length.
This was discovered after the fact. For example, a better
assignment of code words toc zero probability of occurrence
characters could have been achieved by assigning a very small
probability of occurrence, say one .000000% to each of them.

The data compression performance can be summarized by the
average number of bits-per-character required to transmit the
different narrative files using the four Huffman codes associated
with their differing probabilities of occurrence. We refer to
the narrative file used to estimate character probabilities of
occurrence as the training file.

The average number of bits-per-character required to encode
the training file itself can be calculated directly as the sum of
the probabilities of occurrence of a character with the length of
the code word assigned to it for the training file (the value
obtained by summing the entries in the second columns of tables 1
through 4).

The average number of bits-per-character required to encode
the remaining three narrative files using a Huffman code
constructed from the training file is obtained by multiplying
each character probability of occurrence in the narrative file
under consideration by the length of the Huffman code assigned to
that character and summing the results,

Table 6 summarizes the results of the Huffman code average
bits-per-character calculations. Note that using narrative files
I1 and III as training files gave nearly the same results. The
maximum difference between two entries of the tables occurred
when narrative file IV was used as a training file for narrative
file I; the difference was only .23 bits-per-character.

Most of the reduction in the average number of bits required
to transmit a character shown in table 5 occurs because of the
high probability of occurrence of a blank in the narrative files.
This can be seen by calculating the average number of bits
assigned to the non-blanks for the Huffman ccdes assigned to each
of the narratives using it as a training file.

Let p(x) denote the probability of occurrence of a bliank for
a narrative x and let n(x) denote the code word assigned to
blarks for that narrative. Then the average number of bits per
non-blank character b~ can be calculated from the average value
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TABLE 6.

AVERAGE NUMBER OF BITS-PER-CHARACTER FOR
HUFFMAN CODES AND DIFFERENT TRAINING FILES

. TRAINING

NARRATIVE NARRATIVE NARRATIVE NARRATIVE

" FILE FILE I FILE II FILE II1 FILE IV

: ?

| I 4.04 4.05 .24 3.77

i |

: II 4.12 3.95 4.19 3.73 !

‘ |

' 111 4.12 3.96 4.15 3.72 |

| 1v 4.27 4.05 4.32 3.63 |
|
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for all characters b (values given by the diagonal entries in the
table 5) for manuscript x by using the formula:

br = (b - p(x)n(x))/(1-p)
Using this formula, b~ values of 4.9, 4.9, 4.8, and 6.1 bits-
per-character were obtained for narratives I, I1I, I1II, and IV,
respectively.

Comma-free Codes

Surveying Comma-Free Codes

The construction of a Huffman code leads to a code providing
the best data compression. The construction process described by
R. A. Scholtz leads to a family of codes with word lengths
depending on the choices of suffixes and prefixes used in the
steps of the construction process. R. A. Scholtz does not
discuss how to match the comma-free construction process to the
probabilities of occurrence of the characters to be encoded to
provide the best compression. We have found a solution to this
problem.

In this section, we develop an approach to surveying the
distributions of code word lengths that can be obtained by
different choices of suffixes and prefixes. 1In the next
subsection, we show how to choose a comma-free code that gives
the best compression given a character set and the probabilities
of occurrence of the characters in the set.

The method that we found allows us to survey codes in terms
of the distributions of their code words and can be conducted
without specifying the particular code word chosen at each step
of the construction process, or whether the chosen word at each
step is used as a suffix or a prefix. All that need be specified
is the lengths of the words chosen for suffixes and prefixes.

The R. A. Scholtz comma-free code construction process is
seguential. A natural way to survey the codes is to survey them
inductively based on the construction steps. We proceed to make
this idea precise.

Let C[(k] denote the set of code words produced after the
first k steps of the construction process. Let C[0] = { 0, 1}
be the starting point in the construction process.

We seek to describe the distribution of code words by length
in the set C(k+1] given the distribution of code words by length
in the set C{k] and the choice of a word of length s as either a
suffix or prefix in the (k+1)-th step of the construction process
of R. A, Scholtz.

Let n[k])(j) denote the number of code words of length j in
set C(k]. For example, suppose C[1] is constructed from C{0]
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using either "0" or "1"., In this case, n[0](1) = 2 and n{0](j) =
0 for j > 1 and n{1](1) = 1 for j > 0. ,

In the suffix/prefix construction process a word used as a
suffix or prefix can no longer be used as a code word. It is
convenient to describe n[k+1](j) in terms of n~{k](j) when a word
of length s is chosen for constructing C(k+1] from Cl[k].

Let
n~[k](j) = nlkl(j) -1 if j = s
= n(k](j) if 3 £ s
Then
nlk+11(3) = n~[kl(j) + n~[kl(j-s) + ... + n~[k](j-ns)

with the convention that n~{k](j-ns) = 0 if j - ns < 1

In words, to obtain the number of code words of length j in set
Clk+1] one simply adds the numbers of code words in Cl[k]
(excluding the single code word used as a suffix or prefix,
namely, n~[kJ]{j)) plus those which could be obtained by adding
the suff:x/prefix to available words of length j-s (namely,
n~{k](j-s)) plus those which could be obtained by adding the
suffix/prefix word twice to available words of length j-2s
(namely, n~(k](j-2s)), etc.

The above procedure is ideal for compiling tabular summaries
of distributions of code word lengths for available comma-free
codes constructed using the suffix/prefix process. Tables 7
through 10 present word length distributions of some of the
comma-free codes which can be constructed in this manner. With
the exception of the first column. the numbers of code words in a
code are only summarized up through the length of code word
needed to allow the coding of 58 characters. There are an
infinite number of code words of ever increasing lengths
available for each of the codes.

The codes summarized in the tables all begin with
clo)] = { 0, 1}, C{1] constructed using a length 1 code word (by
necessity), and C[2) constructed from C[1] using the other
available length 1 code word (not a necessity).

The columns contain the number of code words of the length
labeling the rows. The number enclosed in parentheses under the
column labels is the length of the code word used to construct
that code set from the code set with distribution of word lengths
given by the previous column. For example, in table 7, the code
set C[3] is obtained from the code set C[(2] through use of a
suffix or prefix word of length 2 (there happens to be only one
code word of length two available in this example, it would be
either "01" or "10" depending on the particular choices of
prefixes or suffixes used in the construction of C[1] and C{2].
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TABLE 7

. PARTIAL SURVEY OF THE DISTRIBUTIONS OF CODE WORD
LENGTHS FOR CODES CONSTRUCTED USING PREFIXES
AND SUFFIXES OF LENGTHS 1,1,2 AND 3 IN THE FIRST
THREE STAGES OF CONSTRUCTION

COMMA-FREE CODE

- (0) (1) (2) (3) (4) (5)
WORD | C C C o C
' LENGTH | (1) (1) (2) (3) (3)
|
D 1
2 E 1 1
3 1 2 2 1
4 ' 1 3 3 3 3
5 : 4 6 6 6
6 i 1 S 8 9 9
7 l 1 6 12 15 18
8 I 1 7 15 21 27
9 | 1 8 18 27
10 1 9 24
T . 10
12 : 11
1
NOTE: TABLE ONLY INCLUDES CODE WORD LENGTHS NECESSARY TO REACH

58 OR MORE CODE WORDS
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TABLE 8. PARTIAL SURVEY OF THE DISTRIBUTIONS OF CODE WORD
LENGTHS FOR CODES CONSTRUCTED USING PREFIXES
AND SUFFIXES OF LENGTHS 1,1, AND 3 IN THE FIRST
THREE STAGES OF CONSTRUCTION

COMMA-FREE CODE

(0) (1) (2) (3) (4)
. WORD | C c c c c |
LENGTH (1) (1) (3) (3)
1 2 1 :
2 L 1 1 1 1 |
3 1 2 1 0
¢ 1 3 3 3
s i 1 4 5 6 ;
1 6 1 5 6 6 |
7 1 6 9 12
8 1 7 12 17 !
9 1 8 14 20
10 1 9 18

11 ) 10
12 ) 11

L

NOTE: TABLE ONLY INCLUDES CCODE WORD LENGTHS NECESSARY
TO REACH 58 OR MORE CODE WORDS
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TABLE 9

. PARTIAL SURVEY OF THE DISTRIBUTIONS OF CODE WORD
LENGTHS FOR CODES CONSTRUCTED USING PREFIXES
AND SUFFIXES OF LENGTHS 1,1,2 AND 4 IN THE FIRST
THREE STAGES OF CONSTRUCTION

| COMMA-FREE CODE
(0) o (2) (3) (4) (5)
WORD | C C C o C C :
LENGTH (1) (1) (2) (4) (4)
1 2 1
2 1 1
.3 1 2 2 2 2
f 4 1 3 3 2 1
5 1 4 6 6 6
6 1 5 8 8 8
7 1 6 12 14 14
8 1 7 15 17 18
9 1 8 18 2¢ 30
10 1 9 24
11 1 10
12 1 1"
NOTE: TABLE ONLY INCLUDES CODE WORD LENGTHS NECESSARY TO REACH

58 OR MORE CODE WORDS
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TABLE 10. PARTIAL SURVEY OF THE DISTRIBUTIONS OF CODE WORD
LENGTHS FOR CODES CONSTRUCTED USING PREFIXES
AND SUFFIXES OF LENGTHS 1,1, AND 4 IN THE FIRST
THREE STAGES OF CONSTRUCTION

‘ COMMA-FREE CODE

(0) (1) (2) (3)
WORD | C C C c
LENGTE | (1) (1) (4)
1 2 1
2 1 1 1
3 1 2 2
4 [ 1 3 2
5 ‘ 1 4 4
6 1 5 6
7 1 6 8
.8 1 7 9
9 1 8 12
10 1 9 15
11 1 10 22

|
\
|
2
|

NOTE: TABLE ONLY INCLUDES CODE WORD LENGTHS NECESSARY
TO REACH 58 OR MORE CODE WORDS
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Figures 11 and 12 illustrate the tailoring of the
distribution of word lengths possible by using some of the two-
or three-step constructions and some of the two--or four-step
constructions, respectively. The figures are constructed to
compare the code words available through selected comma-free
constructions to encode a S8-character set. Each curve is
labeled by the suffix/prefix word lengths leading to the plotted
code set.

Choice of a Comma-free Code for a 58-character Set

It is possible to calculate the average number of bits-per-
character for a given character set and the probabilities of
occurrence of the characters in the sets for each candidate
comma~-free code. The calculation would consist of first ordering
the characters by probability of occurrence (say from highest to
lowest) and assigning code words to the characters by ordering
the available code words from shortest to longest. A sum over
the character set of the probability of occurrence of a character
multiplied by the character code word length then is the average
number of bits-per-character for the code.

It is possible to reduce the comma-free code candidates to a
few obvious front-runners by using Huffman code words as a gauge
for the candidates.

The probabilities of occurrence for the character set used
for our 58 character simulations of the Huffman code, has the
property that the character probabilities fall off rapidly from
the most used characters to the least used characters as shown in
table 3 which was presented earlier. In such a situation, if we
could closely match the code word lengths provided by the Huffman
code constructed for the given character probabilities of
occurrence for the first 10 to 15 characters, we would expect
very similar compression performance from that comma-free and a
Huffman code.

Table 11 shows how closely the simplest suffix/prefix
candidate code word lengths match those provided by the Huffman
code. The first four columns of word lengths repeat the
information presented earlier in table 4 for Huffman codes and a
fifth column presents the word lengths for any of the suffix-
prefix comma-free codes obtained by use of "0" and "1" as
suffixes or prefixes in a two-step construction. The assignment
of code words to characters is presented for the ordering
provided by the probabilities of occurrence of characters in
narrative file II., However, as can be seen from table 11, this
assignment leads to excellent word length agreement through the
first 40 characters, regardless of which narrative file is used
as the training file,.

Consider the first fifteen rows of table 11 for word lengths

of the Huffman code for narrative file Il and for the comma-free
code. For the third character ("T"), the comma-free code is one
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TABLE 11. HUFFMAN AND COMMA-FREE CODE WORD LENGTHS
FOR FOUR NARRATIVE FILES

WORD LENGTHS WORD LENGTHS
FOR NARRATIVE FILE COMMA- FOR NARRATIVE FILE COMMA-
CHAR I IT III 1V FREE CHAR I 11 Irr 1Iv FREE

2 2 2 1 2 J 9 9 10 22 S

E 3 3 4 4 3 X 9 9 ° ! 9

T 4 4 4 4 3 2 10 8 10 9

N 4 4 4 5 4 + 10 8 18 15 9

0 4 5 4 S 4 = 10 9 13 27 9

I 4 4 4 5 4 z 10 12 10 12 9

A 4 4 4 S 5 Q 10 10 10 12 10
R 5 5 4 5 5 3 10 9 10 1 10
S S S 5 ) 5 0 11 10 9 8 10
H 5 5 5 6 5 ~ 11 25 18 27 10
c 5 6 5 6 6 " 11 12 11 18 10
L 6 5 5 6 6 4 12 15 12 13 10
D 6 6 ) 6 6 ~ 12 9 19 27 10
U 6 6 6 6 6 : 12 117 10 1 10
P 6 6 6 6 6 8 12 14 11 10 10
M 6 6 6 6 7 @ 12 18 16 24 T
F 6 6 6 6 7 5 2 12 11 10 11
G 6 6 6 7 7 9 13 22 10 S 11
B 7 8 6 8 7 * 12 S 17 26 "
v 7 6 7 7 7 ; 12 24 11 19 11
2] 7 6 7 9 7 6 13 19 13 10 11
. 7 7 7 7 8 > 13 17 13 23 11
Y 7 8 7 9 8 7 14 20 13 14 15
, 7 7 8 8 8 ! 15 21 12 M 11
) 3 7 S 9 8 < 16 25 12 20 "
{ 8 7 9 9 8 ! 17 23 13 17 12
- 8 8 8 8 8 # 18 13 15 25 12
! 9 7 9 8 8 % 18 16 14 16 12
K 9 8 S 11 9

/ 9 "N 9 9

NOTE: THE COMMA-FREE CODE HAS BEEN CHOSEN TO BEST MATCH THE
WORD LENGTHS COF THE HUFFMAN CODE FOR NARRATIVE FILE II
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bit shorter than the narrative file II word length, which leads
to a decrease in the expected number of bits of .0677. Only two
characters ("A" and "C") of the first 15 are one bit longer,
which leads to an increase in the expected number of bits of
.0450 and .0232. The net difference (or penalty for using the
comma-free code) between the average number of bits-per-character
for the first 15 characters is only .0005 bits-per-character.
For the remaining rows the penalty for using the comma-free code
is at most .0162 bits for any character and only above .01 for
three characters. The overall penalty for using the comma-free
code rather than a Huffman code for compression (based on
narrative file Il1) is only .045 (rounded down to three places)
bits-per-character.

Table 12 presents a comparison between Huffman code bits-
per-character values and comma-free code bits-per-character
values for the code word to character assignments shown in table
11. Slightly lower average bits-per-character values are
possible for comma-free codes encoding narrative file codes I,
111, and IV than those shown in table 12. However, the
performance differences between the Huffman codes and the comma-
free codes are so small that we did not investigate other
matchings of comma-free codes to Huffman code word lengths for
these cases. The Huffman code average bits-per-character values
are those obtained using the assignment of code words to a
narrative file based on the probabilities of occurrence of its
characters.

The next best comma-freé code appears to be the code (1, 1,
3) for which similar calculations revealed a penalty of .114
(rounded down to three bits) bits-per-character for using this
comma-free code instead of the Huffman code for narrative file
II.

It appears from this example that similar procedures would
allow us to find a comma-free code giving nearly the same
compression behavior as a Huffman code, provided that the
probabilities of occurrence of the characters in the character
set fall off in a reasonable manner from the highest probability
of occurrence to the lowest,

COMPRESSION CODE PERFORMANCE IN A CHANNEL WITH ERRORS

In this subsection we estimate the performance of
generalized Baudot codes, Huffman Codes, and Comma-free codes in
a channel with errors. The generalized Baudot and comma-free
codes could be studied analytically. Huffman codes were studied
through use of simulaticns. Each code is evaluated by estimating
the average number of characters decoded in error per bit error
and the average number of characters output by the decoder in
errcc per bit error.
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TABLE 12. COMPARISON OF BITS-PER-CHARACTER VALUES
OF HUFFMAN AND COMMA-FREE CODES

|
: BITS-PER~CHARACTER
NARRATIVE
FILE j HUFFMAN CODE COMMA-FREE CODE
1
|
I | 4.04 4.10
|
11 : 3.95 4.00
{
|
111 | 4.15 4.26
IV [ 3.63 3.81
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Generalized Baudot Codes

The performance of the generalized Baudot ccdes is simple to
evaluate because a single bit error always leads to one character
being decoded in error, whether it occurs in a code word of an
information carrying character or a shift character. 1If the bit
error occurs in the code word of an information character that
character is decoded in error, and if it occurs in a shift
character then that character and intervening shift characters
through the first information character are output as error
characters.

For the single-shift 5 bit based Baudot code, the statistics
are:

1 character decoded in error per bit error

1.01 to 1.02 output character in error per bit error
depending on the training file

For the three-shift 4 bit based Baudot code, the statistics
are:

! character decoded in error per bit error

1.13 to 1.17 output character in error per bit error
depending on the training file

Huffman Codes

Introduction

Simulation results were obtained for the S5-character symbol
set associated with the IBM PC. It was intended to develop
software and plan further analysis based on these results and
then to apply lessons learned to the processing of a Navy message
data base. The Navy message data base was not available in a
timely enough manner to allow the analysis to continue without
interruption so it was decided to emulate the 58-character set
(Baudot) used in Navy communications by reducing the 95-character
IBM PC set to 58 characters. This was accomplished by use of the
all capital letter option of the operating system and by editing
the documents being processed to be free of selected special
symbols. This section contains three subsections: the first
describes the simulation software; the second, the results
obtained for a 95-character set; and the third, the results
obtained for a S8-character set.

Jescription of Simulation Software

The original program reads a text file and counts the number
f occurrences of each character; from this, a Huffman code is
constructed using the construction process first described by
uffman in his original paper. This construction process has
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numerous degrees of freedom. [In order to study the relationship
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between the performance of a Huffman code in a channel with
errors and the specific choices made in the Huffman construction
process, a program was written that allowed the user to specify
the probability that the character set with the highest
probability of occurrence would be assigned a "1" at each stage
of the construction process. (Even though it turned out that the
probability of a "1" occurring was not a meaningful parameter,
varying the probability of a "1" occurring allowed searches to be
conducted for a particular Huffman code with better performance
in a channel with errors than most codes which could be
constructed.) The probabilities of occurrence for each character
and the assigned Huffman code words for each character are
written to files so that the particular code used to obtain a
particular set of performance results could always be recovered
established if desired.

Four basic programs were written to exercise Huffman codes:
(1) a program which would encode a wessage file using the Huffman
code, (2) a program to introduce random bit errors into the
encoded file (the probability of a bit error is user specified),
(3) a program to decode the encoded bit stream, and (4) a program
which compares the decoded bit stream with the original message
and accumulates various error statistics.

An additional software program was developed to evaluate the
feasibility of a user correcting character errors through message
context. The program was interactive and allowed the user to
select any character (of 20 displayed characters) of the message
for possible reinitiation of the Huffman decoding process. The
interactive program would retrieve the code word of the selected
character and reinitiate the Huffman coding process by altering
each bit in its code word. The new characters would be displayed
and after the trial decodings were completed, the user could
choose the most acceptable string of characters and the software
would implement the bit change in the original bit stream
corresponding to the selected option. The software compares the
selected character strings with the original message and records
the number of errors (total) and number of corrected errors.

Simulation Results for a 95-character Set

Figure 13 summarizes the results of an extensive search for
the Huffman code providing the best performance in a channel with
errors. The code word lengths of all of the codes constructed
are the same because the grouping of the characters, as discussed
ear.ier, is the same for all of the codes. They differ only in
~he choices of "1" or "0" at each stage of the Huffman
construction process. The experiments were run by varying the
probability that the set of characters with highest probability

of occzurrence at each stage was assigned a "1". The vertical
scale 1s the average number of characters decoded in error (input
characters to the decoder) per bit error. Each Huffmar code was

exerc.sed against each of the four narrative files described in
the previous paragraph and the maximum and minimum average number
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of characters decoded in error per bit error for tnese tour
narrative files plotted.

Figure 13 shows that the average number of decoded
characters per bit error is definitely dependent on the Huffman
code. The dependence on narrative file is small compared with
the dependence upon the code used. Figure 14 shows this in
another way, showing the dependence of the average number of
decoded characters per bit error for the best performing code,
the worst performing codes, and two selected average performing
codes.

Figure 15 presents a distribution of all of the average
number of decoded character per bit error values obtained for the
different experiments on the narrative files presented in figure
13. It is particularly noteworthy that the four results obtained
for the code with the lowest value fall into the two lowest value
bins of figure 13. Figures 13 and 15 clearly show that the code
with the best error ratios was clearly the best performing code
in a channel with errors.

Some experiments were run using an operator-interactive
program. These experiments were designed to determine the
percentage of errors introduced into a text file through Huffman
encoding, transmission in a noisy channel, and Huffman decoding
that could be corrected through narrative context. In
particular, it appears possible to use a standard spell check
program as a basis for reinitializing Huffman decoding after
changing a bit likely to be in error. The potential of such an
algorithm could be assessed by using an operator-interactive
program--with the operator choosing the decoding which provided
text which made the most sense.

A 4271 character narrative file consisting of 88 lines and
4456 bytes was chosen to assess operator-interactive correcting
of narrative character errors. Bit errors were introduced
randomly at a rate of .005. This error rate would lead to an
estimated 90 characters containing a bit error ((.005)(4271
characters) (4 bits/character)). These 90 character errors led :o
362 character decoding errors. After the inter-active session
the operator was able to reduce the number of character decoding
errors to 85 errors (that is the number of character errors were
reduced by 76 percent).

Simulation Results for a 58-character Set

A series of simulations was run to find the best performing
Huffman code in a channel with errors. Trials were run using :h
probabilities of occurrence of the characters in each of the four
narrative files. Each Huffman code was then exercised for the
four narrative files, including the ore from which the
propabilities of occurrence of the characters were derived.

Simulations were run by randomly introducing bit errors at a
rate of 3 per '000C bits. Successive bit errors were :ndependen:
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of one another. No attempt was made to model the 1mpaci Ol Durst
errors on the channel. It was felt that should burst errors pose
a problem in the implementation of a particular code, it would
always be possible to superimpose interleaving after data
compression encoding and deinterleaving prior to data compression
decoding.

Figures 16 through 19 present the average numbers of
characters decoded in error per bit error for experiments run
using narrative files I, II, III, and IV, respectively, as a
training file. Each figure presents the results encoded
according to the narrative file for which the decoded character
errors per bit value was obtained.

The first thing to observe is that in all four figures, the
poorest error performance results were obtained when processing
narrative file IV (the most compressible). 1In contrast, the best
error performance was obtained for narrative file I1I, which was
the least compressible.

The second thing to notice is that the results obtained
using narrative file IV as a training file gave the best
performance in general in an error channel.

In order to more completely characterize the performance of
Huffman codes in channels with errors, a worst and best case for
each narrative file as a training file from the viewpoint of
average number of characters decoded in error per bit error were
selected for further analysis. Figures 20 through 27 present the
distributions of lengths of successive output characters in error
obtained for the trials given for the selected simulations. Note
that any of the output character error sequencr~ may involve more
than one bit error. This is likely for very long sequences of
output character errors and less likely for shorter sequences
because the bit errors were randomly introduced at a rate of 3 in
1000. However, the likelihood of two bit error induced error
sequences merging 1s very small and can be neglected; therefore,
output character performance is summarized in terms of the
average number of output character errors per bit error.

Some of the distributions had very long sequences of errors
(a maximum of 104 for narrative I as a training file), so that
the distributions are presented for character error sequences of
iengths 1, 2, ..., 9 and those of length 10 or greater. The
maximum length of an error sequence is 1included in each figure in
the upper right hand corner,

There 1s a dramatic difference in the structure of the
distributions for each of the narrative files used as a training
file for the Huffman codes found to give the best and worst
performance 1n a channel with errors. The best distributions
have a preponderance of short length sequences (lengths one, two,
and “hree) while the worst distributions tend to be relatively
£.a- with the occurrence of extremely long character error
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sequences (35, '04, 65, and 9. for narratives I, I, Il1I, anz IV,
respecZtiveiy!.,

The best performing Huffiman code found during =ne s:imu.at:or
nad the distribution presented in figure Z€ anZ o077 irred wher
narrative IV was used as a tra.aing file This S.T.lation anLy
resuized in three output character seguences .cnger -han =~
crharacters, one each of 9, "2, and 4 characters. Tne average
tength of an output seqguence of character errors Ior thi:s Huffnmar
code was 2.4 output charac:ter errors

It 1s worthwhile to compare the distr:but:on shcwrn fcor the
bes: case in figure 26 with a distribution assoc.azec w.tno

worst case shown in figure 2° which occurred for a zode whren
narrative I was used as a tra:ning file. This cdistr.but.on :.s
near.y flat, extending beyond .ength 'C seguences. Indeed, trere
were 22 1nstances of output characte— error seguences of _ergeon
"C or more in the error simulation for this part:icular Huffman
code.

[
o3
m

Table 13 presents the Hufiman code found through s:imu.a<ion
using narrative file IV as a training file and providing -he
_owest average number of characters decoded 1n error per b:-
error (the code resulting in tne distributicn shown 1n figure
2€).

Finally, we observe that for each narrative file as a
training file and for each narrative file encoded and decoded in
ar. error channel, there was a significant dependency of the
average number of characters decoded in error per bit error on
the particular Huffman code. There was usually at least a two-
to-one difference in performance depending on the particular
choices of "1"s and "C"s in the Huffman construction process.
Recall that the number of bits-per-character depended only weak.ly
orn the narrative file using as a training file and not at all on
the details of the Huffman code chosen. The results presented in
tnis section show that both decode and output character error
statistics are far more dependent on the construction process and
narrative file statistics than compression results.

Comma-free Codes

In this section we first estimate the impact of errors on
the performance of tne different comma-free ;odes which can be
constructed in two steps by choosing code words of length one. We
then priefly discuss the impac: of bit errors on the decoding
errors for more general comma-{ree codes.

Comma-free Codes Constructed 1n Two Steps Using Lengtnh One
words

The error analysis discussed 1n this subsection :is
accomplished by obtaining the results f{or the two particular
codes aiready discussed in the section descrxbxng comma-free
codes. The codes were called the suffix-prefix code and the
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TABLE 13, HU. FMAN CODE WORDS FOR NARRATIVE FILE IV
WHICH PROVIDED THE BEST PERFCRMANCE IN A
CHANNEL WITH ERRORS
CHAR CODE WORD CHAR CODE WORD
"o 01 @ 100010100010
! 10001C1Q0C00000011 A 1110
" 11111710101 B 0001101
] 10001010000000010C C 11110
% 10001C°0000000010" D 000011
' 10001070000C00" E 110
( 0010000" F 100011
) 0010CC00 G 111110
x 1131117°01CC H 10000
+ 00101C000 I 1010
, 1111110 J 111111110
- 10007071 K 00101001
. 001000 L 000010
; 1711111111 M 001001
z 00101011101 N 1001
1 001010110 0 1011
Z 0010103111 P 001011
3 1711111101 Q 1000101001
4 001010111000 R 00000
) 100010100011 S 00010
6 0010101110010 T 0011
7 10001010000007 U 000111
8 100010100001 v 0001100
3 0010107110011 W 0010100
: 100010101100 X 111111100
: 171111101000 Y 1000100
< Z

v

10001017000000000
00101607007
1000101000001

4

1000101010
1000101011071
10001010111
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suffix-suifix code. After tne error ana.ysis nas peen carr.ec
cu: for these two codes, 1t i1s easy tO argue that 1) the
analys:s for the suffix-prefix code app.y to a.l four cocdes us:ing
e.her "C" or "1" first and a suf’ix or pref:x firs+e and (zZ) the
araivsis for the suffix-suffix code applies tc the four codes
using "0" or "1" first and either both suffixes or bcth prefixes

The first step in the analysis of each comma-free code :s to
calculate four probabilities:

P{X1} = the probability that a bit error leads to th
deletion of a comma between two code words, i.e., *0 two <ode
words being merged

P(X2) = the probability that & bit error leads to the
movement of a comma relative to 1ts true position if an error had
not occurred

P{X3) = the probability that a bit error leads to the
addition of a8 comma relative to those if an error had not
occurred

P(X4) = the probability that a bit error leads to no change
:n the placement of the commas

The second step of the error analysis allows us to determine
the impact of the bit errors upon character decoding. In
particular, note the following:

(1) if a bit error leads to comma deletion then two
characters are incorrectly decoded as a single character or not
decodable

(2) if a bit error leads to comma movement then two
characters and 1i1ncorrectly decoded into two characters

(3) if a bit error leads to the insertion of a comma (always
within the code word with the bit error) then one character will
be incorrectly decoded into two characters

(4) 1f there is no change in the commas then one character
willi be incorrectly decoded into a single character

It follows that the average number of input characters in error
or the average number of output characters in error can be
estimated directly from the probabilities P(Xi), i = 1, 2, 3, 4.

Each bit error leads to an error in some character given Dy
its character probability. For each character the impact of a
pi1t error, assumed equally likely in each bit of the code word,
car be calculated depending on the structure of the code word.
To make this precise we introduce the following definitions:
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the probab:.ity of occurrence of charazter

o]
(8]
#

2
R
"

the number of bits in tne code word for -

..‘C

} = the number of bits .n the ccde word for
ion of a comma

)
0t
O

! ieading
the delet

nic2) = the number of bits 1n the code word for
comma movement

ieading o

(@]

nic3) = the number of bits in the code word for
the addi-ion of a comma

)

lead.ng 0

nic4) = the number of bits in the code word for
no change in the comma

(@]

leading to

-

Then the probabilities P(X:i), 1 = %, 2, 3, and 4, are ca.culated
for the suffix-prefix code using the normal conditional
probability procedure, namely

P{Xi) = sum over all characters of pl(cin(ci)/n{(c) for i = *,
2. 3, and 4

The requ:red calculations for a particular assignment of the
suffix-prefix code words to a 58-character set are easy but
tedious.

Table 4 summarizes the calculations by character of the
impact of bit errors for the probabilities of occurrence of
chargcters in narrative file II., Similar results are expected
for the remaining three narrative files. The first column
contains the character probab..ities of occurrence listed in
descending order and the second column contains the comma-free
code word associated to the character whose probability of
occurrence 1s presented in the first column. Columns 3, 4, 5,
and 6 present n(ci)/n(c), 1 = 1, 2, 3, and 4, respectively, for
the character whose probability of occurrence is presented.

One observation should be made: the values of nf(ci)/n(c)
depend on the fine structure of the code words, and differ for
words of the same length. The table has been constructed by
assigning the code words with the most equal number of "0"s and
"1"s to the highest probability character and the most unbalanced
code words to the lowest probability characters. We 1illustrate
this by discussing the summarized calculations for the words of
length 8.

There are seven codes word of length 8 available. The two
most unbalanced code words, namely, 01111111 and 00000001 have
different n{ci)/n{(c) values from the other six. This occurs
because for these two codes an error in the first and last bit,
respectively, turns the word into all "1"s and all "0"s,
respectively, which lead tc the deletion of the comma between the
first and second words and the second and th:rd words,
respectively. Also, these two words only have one transition bit
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TABLE "4. PROBABILITIES OF ERRCNECUS COMMA INSERTICONS CR
DELETIONS DUE TC BIT ERRORS FOR THE SUFFIX-PREFIX
COMMA-FREE CODE

PROBABILITY

OF DELETE COMMA ADD NC
OCCURRENCE CODEWQRD COMMA MOVES COMMA CHANGE
.37 e 1.00 0 C C
C.CBES 02 .33 0.33 0 0.233
5.3677 O 0.33 0.33 e 3.323
.0537 001 o 0.50 0 0.50
0.05'8 g1 0.25 0.25 0.25 3.25
£.g05" 0007 0.2% 0.25 0.25 0.25
£.0450 0C11 0 0.40 0.20 2.4%¢C
C.C42" 0Co1 0 0.4C 0.20 5.40
c.0349r g0QCh J.2GC .20 7.40 0.20
.C2863 5000 0.2C 0.2C .40 0.20
$.0232 000111 0 0.33 0.33 0.33
0.0218 000C11 0 0.33 0.33 0.33
2.0206 00111 0 0.33 0.33 0.33
5.018% 011111 0.17 0.17 0.50 0.17
5.017¢C 100000 0.7 0.17 0.50 0.17
0.0162 0000111 0 0.29 0.43 0.28
0.0141 0001111 0 0.29 0.43 0.28
c.0v 2 0011111 0 0.29 0.43 0.28
J.01¢n 0000011 0 0.29 0.43 0.28
0.20099 011111 0.14 0.14 0.57 0.14
7.0c82 10000060 0.4 0.4 0.57 J.14
.0076 00001111 0 0.25 0.5 J0.25
5.0058 0000011 0 0.25 0.5 0.25
5.0050 11100000 0 0.25 0.5 0.25
0.0039 90111111 0 0.25 0.5 .25
0.0039 0000001 0 0.25 0.5 J.25
0.0034 0111111 0.13 0.13 0.63 0.13
5.0024 00000001 0.13 0.13 0.63 0.13
£.0023 000001117 0 0.22 0.56 0.22
0.00"6 00001111 0 0.22 0.56 0.22
0.00°4 00011111 ° 0 0.22 0.56 0.22
0.0013 0000001 0 0.22 .56 0.22
0.0013 00000001 0 0.22 0.56 0.22
.00 g0t11111 0 0.22 0.56 0.22
9.0010 01111111 0.1 0.11 0.67 0,1
0.0009 0000030001 0.1 0.1 0.67 0.1
g.0008 000003111 0 0.20 0.60 0.20
0.00C7 0No0111119 s) 0.20 0.60 0.20
5.0005 0000C01T1T 11 0 9.20 0.60 0.20
0.0005 0001111111 0 0.20 0.60 0.20
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TABLE "1, PROBABILITIES OF ERRONEQOUS COMMA INSERTIONS OR
DELETIONS DUE TO BIT ERRCRS FOR THE SUFFIX-PREFIX
COMMA-FREE CODE (CONT.)

PRIBABILITY
CF DELETE COMMA ADD NT
SCCURRENCE CCODEWORD COMMA MOVES COMMA CHANGE

2.C0S3 0C000C0Y 11 g 0.20 0.6C z.20
2.0CC3 2071111111 7 0.20 0.6C T.2%
0.00%2 000000201 C 0.20 0.60 5.2C
2.Goc2 011111111 0.70 0.10 0.70 c.°¢C
2.0C002 2000000007 9.0 0.1 0.70 .0
C.00C2 00C00011 " 0 5.18 0.64 J."8
C.a022 00300111 0 0.8 0.64 5.8
C.0008 S IR IR 0 0.8 0.64% 2.8
2.o06c2 00C00001 7 1 3 0.18 0.64 c."8
2L0u62 300 11011y 0 0.18 0.64 5.8
P IVIVE 00G0C0201 1 0 0.18 0.64 0.8
CLo0ge 0011111111 0 0.18 0.64 .8
c.00Ce 00000020011 0 0.18 0.64 0.%¢
£.300 0111111111 0.09 0.09 0.73 C.0S
£.00¢CC 00000000001 0.09 0.09 0.73 0.08
¢.0000 00Go0Q1t1111 Q@ 0.17 0.66 .17
£.0000 00C001111%11 O 0.17 0.66 0.°7
£.J0303 000000011111 O 0.17 0.66 .17
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For the assignrment of suffix-prefix codes toc crnarac-ers
descr:bed above and summar.zed by table !, the Icllow.ng
$S°3%7.S%7.CS were obtained:

PiXT) = 22

DIxX2y o= L 0¢

PIX3Y = .6

PXd)r = 07
Ncve that abou: three-gquarters of the contributicn zo P!X1! s

=~a+- provicded by the code word "01" assigned to the blank
~naracter with probability of occurrence 0.317124.

The average number of coded characters decoded in error per
Z.t error s g:iven by

(.42)(2) = (.21)(2) +~ (.16)(1) + (.21)(1) = 1.63

The average number of output characters which are incorrect per
bit error is given by

.42)01) - (.21)(2) « (.16)(2) « (.21)(1) = 1,37,

Tnese values are obtained by treating words too long <o be
decoded because they exceed the longest word assigned one of the
S8 characters as being incorrectly decoded. (Such characters
zould be decoded into a 59-th character indicating an error has
occurred.) To distinguish these cases from the cases when the
erroneous words arising through mispiacement of commas can be
decoded into one of the 58 characters to which code words have
peen assigned would require more delicate arguments depending c¢n
the lengths and structure of the code words for the characters
preceding and following the one in error.

The calcu.ations presented clearly i1ndicate that the
performance of the prefix-suffix code in an error channe. 1s
considerably better than the performance of any Huffman cocde tha:
we tound, so tnat these more delicate calculations are not
necessary. And, this improved performance was obtaired by paying
an insignificant penalty 1n compress.on {(or equivalently,
~hruput).

A two step comma-free code construction using a one-bit
prefix and a one-bit suffix, no matter what choices are made
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TABLE S, PROBABILITIES OF ERRONEDUS COMMA INSEXRTIONS
DUE TO BIT ERRCORS FCR THE SUrFIX-SUFFIK
COMMA-FREE CODE

PRIBABILITY

JF ADD NC
2CCURRENCE CCDEWUORD COoMMA CHANGE
.37 ¢ ¢ C
>.08e= crc s .33
c.le7T 61 S .33
.0537 20 0cC .25 €.25
2.05% VIRV .28 .50
s.eee grn .25 0.25
2.04s0 g10C¢C 0.40 0.20
2.%42° 01700 0.20 0.40
°.0397 St 0.20 C.40
c.02sl Craan 0.40 0.20
¢.C023: 01000C 0.50 c.17
c.027¢8 g*1000 0.33 0.33
2.C20¢ 011100 0.33 €.33
C.018¢< 011110 .33 0.33
€.G017C 0111717 0.50 .17
C.C16% 0100000 0.%57 0.14
2.014" 0110000 0.43 0.28
g.c%2 0111000 J3.43 0.28
c.0101 0111100 0.43 0.28
0.009S Q111110 0.43 0.28
G.0082 011111 0.57 0.14
0.007¢ 0100G00C 0.62 0.13
£.005¢& 01100000 0.5 0.25
€.005¢C 01110000 0.5 0.25
0.0039 01111000 0.5 0.25
0.003S 01111100 0.5 0.25
0.0034 61111110 0.5 0.25
0.0024 01111 0.63 0.13
N.0023 010000000 0.67 0.1
3.0016 011000000 0.55 0.22
0.0014 011100000 0.55 0.22
¢c.0C13 011110000 0.55 0.22
.0013 011111000 0.55 0.22
¢.Q01° 011111100 0.55 0.22
c.001® 011111110 0.55 0.22
0.0009 01111111 0.67 0.1
¢.0008 0100000000 0.70 0.10
€.0007 0110000000 0.60 0.20
0.0005 0111000000 0.60 0.20
0.0005 0111100000 0.60 0.20
2.0003 011°110000 0.560 0.290
£.0003 0111111000 0.60 0.20
0.0002 0111111100 0.60 0.20
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TABLE 15. PROBABILITIES OF ERRONEOUS COMMA INSERTIONS
DUE TO BIT ERRORS FOR THE SUFFIX-SUFFIX
COMMA-FREE CODE (CONT. )

| PROBABILITY

, OF ADD NO

i OCCURRENCE CODEWORD COMMA CHANGE
0.0002 0111111110 0.60 0.20

[ 0.0002 0111111111 0.70 0.10

|  0.0002 01000000000 0.73 0.09
0.0002 01100000000 0.64 .18
0.0002 01110000000 0.64 0.18
0.0002 01111000000 0.64 0.18
0.0002 01111100000 0.64 0.18

| 0.0001 01111110000 0.64 0.18
0.0001 01111111000 0.64 0.18
0.0001 01111111100 0.64 0.18
0.0001 01111111110 0.64 0.18
£.0000 01111111111 0.73 0.09
€.0000 010000000000 0.75 0.08
¢.0000 011000000000 0.67 0.17
€.0000 011100000000 0.67 0.17
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second bit in error was the only "1" in the code word.
Therefore,

(1) the probability that a bit error in the second bit leads
to the deletion of a comma is given by:

p(2)/2 + p(3)/3 + ... + p(12)/12 =

T~ p—
OO0 O0OO0OCOCDOO0OO0COO0O
. L] L] . . . - . . - Ll

o

—

o

N

O I

0.197 [rounded to three places]

where p(2), p(3), ..., p(12) are the probabilities of occurrence
of the character which has been assigned a word of length two
with a single "1", a word of length three with a single "17",
...., a word of length twelve with a single "1", respectively
(see table 15).

(2) the probability that a bit in the second bit leads to
the addition of a comma is given by:

(sum over characters of p(c)/n(c)) -
[p(2)/2 + p(3)/3 + ... + p(12)/12] =
.312 - 197 = 115
where p(2), p(3), ..., p(12) are as above.

The probability that a bit error leads to the addition of a
comma through changing other than the first or second bit is .18
from summing the data presented in column 3 of table 15. The
probability that a bit error leads to no change in the commas
through changing other than the first or second bit is .20 from
summing the data presented in column 4 cf table 15.

For the assignment of suffix-suffix codes to characters
described above and summarized by table 15, the following summary
statistics follow from combining the estimates which have been
obtained:

P(X1) .35

P(X2)

.16

73




lIlIIlIIllIlIIlIllIIllllllIlIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII----T

P(X3) .29

P(X4) = .20
Note that about three-quarters of the contribution to P(X1) 1s
that provided by the code word "01" assigned to the blank
character with probability of occurrence 0.317124.

The average number of coded characters decoded in error per
bit error is given by

(.35)(2) + (.16)(2) + (.29)(1) + (.20)(1) = .51

The average number of output characters which are incorrect per
bit error is given by

(.35)(1) + (.16)(2) + (.29)(2) + (.20)(1) = 1.45,

The statistics developed for the particular suffix-suffix
code applies to the other suffix-suffix code and to both prefix-
prefix codes. Observe that if "0" is chosen as a suffix first
and then "1", the code words have the structure

10...07...1 with at least one "0" and always starting with

"1!!

This code is obtained from the one analyzed by interchanging the
roles of "0" and "1" so it will have the same statistics as the
code analyzed, provided that the code words assigned to the
characters are those obtained by interchanging "0"s and "1"s in
the assignment made previously. Observe that if "1" is chosen as
a prefix, and "0" as a prefix, the code words have the
structure:

0...01...70 with at least one "1" and always ending with "0"

These code words are simply the mirror images of the words in the
suffix-suffix code analyzed. Assign these code words to
characters by taking mirror code words to those assigned for the
suffix-suffix code. Then, the first position analysis, which
depended on the ending of the prior word, applies to the last bit
of the prefix-prefix code and the beginning of the next code word
ending in "0" or "1". The second bit analysis applies to the
second to last bit. The analyses conducted before clearly apply
to the remaining bits. It follows the statistics will be the
same for this prefix-prefix code.

The remaining prefix-prefix code is obtained from the cne just
discussed by interchanging "1"s and "0O"s; therefore, it will also
have the same statistics, provided (once again) that the
assignment of code words to characters is obtained by
interchanging "1"s and "0"s in the above assignment.
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Comma-free Codes Constructed Using Other Than Length One Words

The results presented in the last section were for the two
simplest kinds of comma-free codes. 1In this section, it is shown
that more complicated phenomena can occur leading to more than
two character decoding errors as a result of a single bit error.
The results indicate that as the number of steps in the comma-
free code construction process increases without limit the number
of character decoding errors probably increase without limit,
However, we have not succeeded in exhibiting this for a sequence
of comma-free codes involving the use of longer and longer
construction processes.

Some additional terminology is needed to facilitate the
discussion of general comma-free codes. Let

k denote the kernel of the code under construction

p(i) , i =1, 2, ... denote the prefixes used in the code
under construction

s(j), J =1, 2, ... denote the suffixes used in the code
under construction

The most general comma-free codes have not been discussed in
this manuscript and have not been analyzed in this study. We
impose the following additional conditions on the codes under
discussion:

(1) k = "0" or "1"
(2) both "0" and "1" are used as either prefixes or suffixes

(3) the length of the prefix or suffix used in k-th
construction step is less than or equal to the length of the
prefix or suffix used in the (k+1)-th construction step. (These
restrictions may not be necessary for carrying out an error
analysis similar to that presented, but they are convenient and
probably do not exclude any codes that are of interest for data
compression.)

The results presented in the last section can be generalized
to an important family of comma-free codes, which we call
exhaustive codes. A comma-free code is called exhaustive if for
each of the steps in the code construction process the code word
chosen as either a prefix or suffix is the shortest code word
possible. For example, referring to tables 7,8,9, and 10, the
codes (1,1), (1.1,2), (1,1,2,3), and (1,1,2,3,3) are exhaustive
and the codes ( ,1,3), (1,1,3,3), (1,1,2,4), and (1,",4) are non-
exhaustive codes,

For an exhaustive comma-free code, a single bit error can
lead to at most twc characters decoded in error. For non-
exhaustive comma-free codes, it may happen that a single bit
error leads to more than two characters decoded in error. To
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establish this result, consider (1) an incoming sequence of bits
as a sequence of kernels, prefixes, and suffixes, and (2) the
comma-insertion algorithm (after the first step) as deleting
commas between the kernels, prefixes, and suffixes. Now, let us
discuss the potential impact of a single bit error occurring in a
kernel or in a prefix or suffix of the code words. In
particular, we wish to discuss how a error can impact the comma
deletion process between two words which are error free.

Let us denote the word with a bit error by use of "~".
Consider, the incoming sequence of binary bits parsed into
codewords as follows:

w(l)w(2)wr(3)w(4)w(5).

Under what conditions will the comma separating w(') and w(2) or
the comma between w(4) and w(5) be altered as a result of a bit
error somewhere in the codeword w(3)? Each of these words is
constructed from the kernel and prefixes and suffixes, as
described above.

For the comma between w(1) and w(2) to be erased by the
comma-insertion algorithm, the prefix or kernel beginning w(2)
must be transformed into a suffix through a bit error in w(3).
Since none of bits in w(2) are in error, this can only happen if
the addition of bits to the bits of w(2) has created a suffix
used in the construction process; i.e., there exists a code word
of shorter length in the code than some suifix in the code. This
means the comma-free code is non-exhaustive.

For the comma between w(4) and w(5) to be erased by the
comma-insertion algorithm, the suffix or kernel ending w(4) must
be transformed into a prefix through a bit error in w(3). Since
none of the bits in w(4) are in error, this can only happen if
the addition of bits to the bits of w(2) has created a prefix
used ir the construction process; i.e., there exists a code word
of shorter length in the code than some prefix in the code. This
meens the comma-free code is non-exhaustive.

It is clear that one could improve upon the results by
examining the non-exhaustive codes to see if either of the above
phenomena can occur for a particular selection of prefixes or
suffixes. This is relatively straightforward for any family of
codes constructed using mostly short length prefixes and suffixes
and no more than six construction steps. This is because the
analysis is carried out by examining only those code words less
than the longest suffix or prefix used in the construction. We
illustrate this by considering the suffix-prefix codes of the
form (1,1,3).

For kernel "0", suffix "1", prefix "0", there would be two
three letter code words available, namely "001" and "011", to be
selected as either a suffix or prefix. The only length two code
words are "00" and "01". Note if "011" is chosen as a prefix,
there is no one bit which can be combined with "0C" or "01" from
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the left to create it; 1f i1nstead "001" 1s cnosen as a pref:x "L~
could be combined with "07" to obtain i1t., However, under tne
same conditions if "011" is chosen as a suffix, then a one-pi-
"addition” to "01" on the right leads to the chosen suffix; if
instead "001" 1s chosen as a suffix then again a one-bit
"addition” to "00" on the right leads to the chosen suffix.
Thus, for three of the four constructions considered, one bit
error could lead to three characters decoded ir. error. Note,
that for these codes, there has to be a very special combination
of words and very particular bit errors to lead to more than two
character decoding errors as a result of a single bit error.

If we consider when a single bit error couid lead to four
character decoding errors, sim:i:lar reasoning to that presentec
above would lead to the necessity that two cocde words of length 2
pius one or more bits would need to be a suffix or prefix; i.e.,
the code would need to involve a suffix or prefix of length 5 or
more. Hence, for the four non-exhaustive codes discussed in this
section, namely (1,1,3), (1,1,3,3), (1,1,2,4), and (1,1,4), a
single bit error can never lead to four or more character
decoding errors.

SUMMARY

The present code consists of a parity bit, 5 information
bits, and a stop bit. Our discussion of generalized Baudot codes
suggested that a code using 4 information bits could replace the
S information bit code now being used. We suggest a parity bit,
4 information bits, and 1/2 bit for stops (i.e., a stop bit for
every 8 information bits). The number of bits for the new code
is given by:

4.5 + (4.5/4)(1.5) = 6.2 bits-per-character
The data compression provided by this code would be
7/6.2 = 1.13

The more complicated encoding and decoding associated with
comma-free codes does promise some additional compression.
However, a mechanism to allow receiver synchronizatiorn in the
absence of stop bits needs to be identified, and the
incorporation of error correction codes requires care. Note, ore
cannot just add parity bits operating on code words, because in
their presence the comma insertion algorithm would break down.
Error correction information must be carried by comma-free code
words. We suggest that it be incorporated into the encoding of
the end-of-line character. One would map the error correction
information into a set of long code words which could provide
correction for the line and end-of-line indication by its
presence.

It is always possible to superimpose an error correction code
on the serial bit sequence before transmission and then utilize
1t for error correction before beginning the comma-free decoding
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process which begins with the comma-insertion algorithm,

1f error detection and correction bits were kept to the same
ratio of information bits to non-information bits as the code
discussed above, we would need

4 + 1.5 = 5.5 bits-per-character
This would translate into a data compression ratio of
7/5.5 = 1,37

This compression ratio is probably the best that could be
accomplished using comma-free codes and character encoding based
on probabilities of occurrence of the characters.

More powerful encoding techniques would use conditional
probability of occurrences of characters. The suggested approach
would be to create a table of comma-free code words for
characters depending on the previously transmitted one or two
-haracters. The encoding process would be reinitialized with the
beginning of each word. As a further aid to the identification
of the beginnings of words, it might prove desirable to always
encode spaces in the same way by reserving some particular code
word for spaces. It is recommended that the use of conditional
probabilities of character occurrence rather than probabilities
of occurrence and the appropriate error detection and correction
coding for use with the compression code be analyzed in a follow-
on effort. Such an approach promises considerable additional
compression over that shown for any of the cases investigated in
this report.

78




LIST OF REFERENCES

Huf fman, D., "A Method for the Construction of Minimum
Redundancy Codes", Proceedings of the Institute of Radio
Engineers, Vol. 40, pp. 1098-1101, September 1952.

Scholtz, R., "Codes with Synchronization Capability",
IEEE Transactions on Information Theory, Vol. IT-12,
No. 2, April 1966.

Scholtz, R., "Maximal and Variable Word-Length Comma-Free
Codes”"™, IEEE Transactions on Information Theory,
Vol. IT-15, No. 2, March 1969.

78







